Crystallization kinetics of poly(vinylidene fluoride)

Carlo Mancarella and Ezio Martuscelli

Laboratorio di Ricerche su Tecnologia dei Polimeri e Reologia del CNR, Via Toiano 2, Arco Felice (Napoli), Italy (Received 13 June 1977; revised 21 July 1977)

Specimens of poly(vinylidene fluoride) were crystallized isothermally at a series of temperatures in the vicinity of the melting point. The α -form was the only crystalline polymorph present in the crystallized samples. Crystallization rates have been measured by differential scanning calorimetry. The results were analysed in terms of the Avrami equation. The rates of crystallization depend upon the undercooling and the data agree with a process of growth of spherulites controlled by a secondary surface coherent nucleation mechanism. The equilibrium melting temperature, the Avrami exponent, the free energy of formation of a nucleus of critical dimensions and the surfaces free energy of the lamellar crystallites were determined.

INTRODUCTION

Poly(vinylidene fluoride) (PVF₂) is a polymeric material with very interesting scientific and technological properties. The polymer is characterized by piezoelectric and pyroelectric effects, non-linear optical susceptibility and an unusually high dielectric constant¹.

Further PVF₂ is known to exist in at least two crystallographic forms designated form I or β , form II or α^2 . In addition to these phases, several investigators have suggested the existence of a third polymorph of PVF₂³. Form II is obtained by crystallization of PVF₂ from the melt either isothermally or at slow cooling. An orthorhombic unit cell, having axes a= 9.66 Å; b = 4.96 Å; c (chain axis) = 4.64 Å has been assigned to phase II.

The unit cell contains two polymer chains and four monomer units with a density of 1.90 g/cm^3 . The chain backbone assumes in the crystal a 2_1 helix conformation with a tg_+tg_- rotation angles sequence¹. In the present work the kinetics of the isothermal crystallization, from the melt, and the melting behaviour of the α -form of PVF₂ is studied by calorimetric techniques. It seemed interesting, both from fundamental and technological points of view, to determine for this polymer quantities such as half-times of crystallization, Avrami exponents and kinetic rate constants in the vicinity of the melting point. We are also concerned to derive the values of the energy of formation of a nucleus of critical dimensions and of the surface free energy of lamellar crystallites of PVF₂ in form II.

EXPERIMENTAL

Materials

The sample of PVF_2 chosen for the present study was provided by the Pennwalt Corp. under the trade name Kynar Resin Grade 301. The sample was completely characterized by Welch⁴. The amount of head-to-head structure was stated to be approximately 5.7%.

Apparatus

All the measurements were carried out using a Perkin– Elmer DSC-2 differential scanning calorimeter operating under N_2 atmosphere. The temperature scale was calibrated against the melting temperatures of benzoic acid, In and Sn for an individual heating rate. For the determination of the apparent enthalpy of fusion In was used as standard material.

Isothermal crystallization

The sample of PVF_2 was first melted at 157°C and afterwards heated for 15 min to a temperature 20°C above its melting temperature in order to destroy any traces of crystallinity. Subsequently the sample was cooled rapidly using a scan rate of 320°C/min to the predetermined crystallization temperature (133°, 136°, 139°, 141°, 144°, 146°, 147°, 149°C) and the exothermic crystallization curve was recorded.

The weight fraction X_t of material that can crystallize at time t was calculated from the equation⁵:

$$X_t = \int_0^t \left(\frac{\mathrm{d}H}{\mathrm{d}t}\right) \mathrm{d}t / \int_0^\infty \left(\frac{\mathrm{d}H}{\mathrm{d}t}\right) \mathrm{d}t$$

zero time of crystallization was taken as the time when the central light came on, indicating thermal equilibrium.

Furthermore the melting curves of the crystals formed in the isothermal crystallization were recorded in order to correlate the fusion temperature T_m with the crystallization temperature T_c . The maximum of d.s.c. endotherm of fusion was assumed as the T_m of the polymer sample. A heating rate of 20°C/min was used throughout the experiments.

RESULTS AND DISCUSSION

The half-time $t_{1/2}$ of conversion of α -form of PVF₂ at various crystallization temperatures T_c was determined from the crys-

Figure 1 Crystallization isotherms of PVF_2 in form 11 for different crystallization temperatures: A, $T_c = 407K$; B, $T_c = 409K$; C, $T_c = 412K$; D, $T_c = 414K$; E, $T_c = 417K$

Figure 2 Variation of $t_{1/2}$ with the crystallization temperature

tallization isotherms. Examples of such curves are reported in *Figure 1*. The dependence of $t_{1/2}$ upon the crystallization temperature is shown in *Figure 2*. As observed in all polymeric materials $t_{1/2}$ increases with T_c for low undercoolings.

The kinetics of isothermal crystallization of PVF_2 has been quantitatively analysed by means of the Avrami equation⁶:

$$\log[-\log(1 - X_t)] = n \log \frac{t}{2.3} + \log \frac{Z}{2.3}$$
(1)

where X_t is the weight fraction of crystallized material at time t, n is the Avrami exponent and Z the kinetic rate constant.

Avrami plots of PVF_2 are reported in *Figure 3*. Straight lines are obtained for all the T_c examined. From the slopes of these straight lines *n* was estimated.

The kinetic rate constant Z was calculated by using the relation:

$$Z = \frac{\ln 2}{t_{1/2}^{n}}$$
(2)

The values of n and Z for each T_c are reported in Table 1 together with the values of $t_{1/2}$. In the calculation of Z we used for all T_c an average value of 3.94 for n.

In the case of spherulitic growth with chain-folded lamellae where a coherent two-dimensional surface secondary nucleation process controls the radial growth of spherulites then the overall rate constant Z may be expressed, according to

the kinetic theory⁷, by the following equation:

$$\frac{1}{3}\log Z = A_0 - \frac{\Delta F^*}{2.3kT_c} - \frac{\Delta \Phi^*}{2.3kT_c}$$
(3)

In our analysis we assumed A_0 as constant, which means that the spherulite nucleus density is independent of time, melting temperature and crystallization temperature⁸.

In equation (3), ΔF^* is the activation energy for the transport process across the liquid-crystal interface, and k is the Boltzman constant. $\Delta \Phi^*$ is the free energy of formation of a nucleus of critical dimensions.

 $\Delta \Phi^*$ is given by ⁷:

Z

$$\Delta \Phi^* = \frac{4b_0 \sigma \sigma_e T_m^0}{\Delta H_F \Delta T} \tag{4}$$

where σ and σ_e are the surface free energies per unit area parallel and perpendicular, respectively, to the molecular chain direction, b_0 is the distance between adjacent fold planes, ΔH_F is the enthalpy of fusion, T_m^0 is the equilibrium melting temperature and $\Delta T = T_m^0 - T_c$ is the undercooling. The combination of equations (3) and (4) leads to the equation:

$$\frac{1}{3}\log Z = A_0 - \frac{\Delta F^*}{2.3kT_c} - \frac{4b_0\sigma\sigma_e T_m^0}{2.3k\Delta H_F T_c\Delta T}$$
(5)

Figure 3 Avrami plots for α -form of PVF₂ at various crystallization temperatures: A, $T_c = 407$ K; B, $T_c = 412$ K; C, $T_c = 414$ K; D, $T_c = 417$ K; E, $T_c = 419$ K; F, $T_c = 422$ K

Table 1 Avrami exponent n, kinetic rate constant Z and the halftime of conversion $t_{1/2}$ at various crystallization temperatures T_c

<i>т_с</i> (К)	n	Z (min-3.94)	t _{1/2} (min)
407	3.82	0.49	1.09
409	4.62	0.03	2.15
412	3.62	0.02	2.60
414	4.60	87 × 10 ^{−5}	5.45
417	3.30	44×10^{-6}	11.60
419	4.35	46 × 10 ^{−7}	20,60
420	2.99	10 × 10 ⁻⁷	30.00
422	4.23	15 × 10 ⁻⁸	49.00

Figure 4 Plot of 1/3 log Z against $T_m^0/T_c\Delta T$: A, $T_m^0 = 451$ K; B, $T_m^0 = 483$ K

In the case of specimens of PVF_2 in form II the equilibrium melting point T_m^0 was derived by Nakagawa and Ishida⁹ from the linear relation of the melting point and the annealing temperature. They found that in the case of their specimens when the annealing temperature is above 160°C, partial melting occurs and the melting point increases linearly with annealing temperature. By applying to their data the wellknown equation⁷:

$$T_m = T_m^0 \quad \frac{\gamma - 1}{\gamma} \quad + \frac{T_a}{\gamma} \tag{6}$$

a value of 210° C for T_m^0 was obtained.

In a recent paper Welch and Miller¹⁰ found a value of 178°C for the T_m^0 of the α -polymorph of PVF₂ that is far below that found by Nakagawa and Ishida⁹.

As Figure 4 shows a linear trend is observed in the plots of $1/3 \log Z$ against $T_m^0/T_c \Delta T$. Curves A and B of Figure 4 refer to values of T_m^0 of 178° and of 210°C, respectively.

According to equation (5) this result indicates that, at least in the vicinity of the melting point and for the values of undercooling used, the transport term $\Delta F */kT_c$ may be considered as constant. From the slopes of the straight lines of *Figure 4* the quantity $4b_0\sigma\sigma_e/2.3k\Delta H_F$ is estimated to be 190 and 702K for equilibrium melting temperatures of 178° and 210°C, respectively.

By using equation (4) the free energy of formation of a nucleus of critical dimensions $\Delta \Phi^*$ may be calculated.

The dependence of $\Delta \Phi^*$ upon the undercooling is shown in *Figure 5* for $T_m^0 = 178^{\circ}$ C curve A and for $T_m^0 = 210^{\circ}$ C curve B.

According to the crystallographic data on the form II of PVF₂ of Lando, Olf and Peterlin² the most probable fold planes are the (200). Then the distance of two adjacent fold planes b_0 is estimated to be 4.83 Å. The enthalpy of fusion of the form α of PVF₂ was evaluated by Nakagawa and Ishida⁹ from melting point depression data. They found for ΔH_F a value of 2.01 × 10⁹ erg/cm³. The quantity $\sigma\sigma_e$ may be calculated by substituting in the quantity $4b_0\sigma\sigma_e/2.3k\Delta H_F$ the known values of b_0 and ΔH_F ; $\sigma\sigma_e$ turns out to be equal to 627.4 and 2319.4 erg²/cm⁴ for values of the slopes of the straight lines of *Figure 4* of 190 and 702K, respectively.

From the well-known relation⁷:

$$\sigma = \alpha \Delta H_F b_0$$

Figure 5 Variation of $\Delta \Phi^*$ with the undercooling ΔT : A, $T_m^0 = 451$ K; B, $T_m^0 = 483$ K

where α is equal to 0.1 for all polymers, the surface free energy parallel to the chain direction σ is estimated to be 9.7 erg/cm². From this, the surface free energy of folding σ_e , may be evaluated. We found for σ_e values of 65 and 239 erg/cm² from $\sigma\sigma_e$, equal to 627.4 and 2319.4 erg²/cm⁴, respectively.

Nakagawa and Ishida⁹ found for σ_e a value of 5.1 kcal/ mol of lamellar sequences (about 349 erg/cm²) from the plot of the melting point *versus* reciprocal lamellar thickness obtained by electron microscopy. Values of σ_e of 349 and 239 erg/cm² seem to us rather large when compared with the values of σ_e reported in literature for other linear polymers^{5,7.8,11}.

This could be an indication that Nakagawa and Ishida used an overestimated value for T_m^0 . Further the high value found by them for σ_e is probably to be related also to the intrinsic difficulty in estimating by electron microscopy the true value of the lamellar thickness of crystallites.

REFERENCES

(7)

- Bergman, J. G., McFee, J. H. and Crane, G. R. Appl. Phys. Lett. 1971, 18, 203; Murayama, N. J. Polym. Sci. (Polym. Phys. Edn) 1975, 13, 929
- 2 Gallperin, Ye. L., Strogolin, Yu, V. and Mlenik, M. P. Vysokomol. Soedin 1965, 7, 933; Hasegawa, R., Takahashi, Y., Chatani, Y. and Tadokoro, H. Polym. J. 1972, 3, 600; Lando, J. B., Olf, H. G. and Peterlin, A. J. Polym. Sci. (A-1) 1966, 4, 941
- Zerbi, G. and Cortili, G. Chem. Commun. 1965, 13, 295; Doll
 W. W. and Lando, J. B. J. Macromol. Sci. (B) 1968, 2, 219
- 4 Welch, G. J. Polymer 1974, 15, 429
- 5 Maglio, G., Martuscelli, E., Palumbo, R. and Soldata, I. Polymer 1976, 17, 185
- 6 Sharples, A. 'Introduction to Polymer Crystallization', Arnold, London, 1966
- 7 Hoffman, J. D. SPE Trans. 1964, 4, 315; Hoffman, J. D. and Weeks, J. J. Chem. Phys. 1962, 37, 1723
- 8 Godowsky, Yu. K. and Slonimisky, G. L. J. Polym. Sci. (Polym. Phys. Edn) 1974, 12, 1053
- 9 Nakagawa, H. and Ishida, Y. J. Polym. Sci. (Polym. Phys. Edn) 1973, 11, 2153
- 10 Welch, G. J. and Miller, R. L. J. Polym. Sci. (Polym. Phys. Edn) 1976, 14, 1683
- 11 Martuscelli, E. and Pracella, M. Polymer 1974, 15, 306